mh

DFAM API FOR DIGITALPERSONA ACCESS MANAGEMENT

Overview

The DigitalPersona Access Management AP| provides a comprehensive set of components and
libraries exposing various functions and methods for using the power of the DigitalPersona platform in
your own custom-built web-based and native Windows applications.

Sample applications are also provided, which illustrate the features available through the included APls.

This documentation is divided into several sections that align with the specific uses of the various

components, APIs and wrappers available.

= Toread a brief overview of each section, on desktop browsers, use the links on the left. For mobile

browsers, use the Menu button at the top of the screen.

= To read the provided documentation for an item, use the links below to view the GitHub Pages for

that repository.

= To go to the actual repository, click the [View Repo] link in the upper-right corner of any page within

the section’s documentation.

Section Repository & documentation
Components digitalpersona-core

digitalpersona-services

digitalpersona-access-management-services

digitalpersona-authentication
digitalpersona-enrollment

digitalpersona-devices

digitalpersona-native-api

DigitalPersona Access Management API.PDF

Purpose

Contains the core classes and
functions shared by the Access
Management APIs.

JS wrappers for the Web Access
Services shared by the authentication
and enrolliment APIs

A collection of RESTful services used
to implement various features of the
DigitalPersona solution in web
applications.

AP enabling credential authentication
AP enabling credential enrollment
API providing access to devices
supported by the DigitalPersona
Access Mangement APL

API providing native Windows

implementation of enroliment,
authentication and device access.

https://hidglobal.github.io/digitalpersona-access-management-api/digitalpersona-samples.html
https://hidglobal.github.io/digitalpersona-core/index.html
https://hidglobal.github.io/digitalpersona-services/index.html
https://hidglobal.github.io/digitalpersona-access-management-services/index.html
https://hidglobal.github.io/digitalpersona-authentication/index.html
https://hidglobal.github.io/digitalpersona-enrollment/index.html
https://hidglobal.github.io/digitalpersona-devices/index.html
https://hidglobal.github.io/digitalpersona-native-api/index.html

Sample digitalpersona-sample-angularjs Bank of DigitalPersona sample

Applications application built on the Angular)s
foundation and illustrating web user
creation, enroliment, device access
and authentication utilizing the
DigitalPersona LDS solution.

digitalpersona-sample-js-oidc Sample JavaScript application using
OpenlD Connect to access HID
DigitalPersona AD features such as
web authentication, enrollment and
device access.

digitalpersona-native-samples Sample native Windows applications
in C++ and NET, illustrating Windows
and web-based enroliment,
authentication and device access.

For web-based applications, you can use the Authentication or Enrollment APIs directly, or through the
relevant JavaScript wrappers to enroll and authenticate DigitalPersona users quickly and easily against
authentication policies as defined by the DigitalPersona administrator or through custom policies
defined by your application, and subsequently release their users’ protected data (secrets).

For Windows native applications, the Native AP| provides an APl which can accessed through either
C++ or NET applications.

All of the authentication credentials provided in the HID DigitalPersona solution are supported through
the corresponding APls except for the Face credential (for web APIs) and the Bluetooth credential (web
and Windows APIs).

Working environment

Use of the included APls assumes that an appropriate HID DigitalPersona solution has been installed,
configured and verified. Features exposed through the Native APIs can be used in a minimal HID
DigitalPersona environment consisting of the HID DigitalPersona Workstation or HID DigitalPersona
Kiosk and a single HID DigitalPersona AD or LDS Server. Use of the REST APIs requires the additional
installation of the HID DigitalPersona Web Components package.

Target Audience

Developers should have an understanding of the core components of the HID DigitalPersona solution
and its terminology and concepts. They should also be knowledgeable in the specific target platform
and the relevant development language.

DigitalPersona Access Management API.PDF

https://hidglobal.github.io/digitalpersona-sample-angularjs/index.html
https://hidglobal.github.io/digitalpersona-sample-js-oidc/
https://hidglobal.github.io/digitalpersona-native-api/sample-applications.html
https://hidglobal.github.io/digitalpersona-sample-cpp/index.html
https://hidglobal.github.io/digitalpersona-sample-dotnet/index.html

Additional Resources

You can refer to the additional resources described in this section to assist you in using the API

Subject Resource

Concepts, features, processes and terminology HID DigitalPersona AD and LDS Administrator Guides, Client
used in HID DigitalPersona solutions Guide and supporting documentation is available at:
hitps://www. crossmatch.com/company/support/documentation

System Requirements

The following section describes the requirements for the Development System and the Targ& System.

Development system

The following section describes the requirements for the Development System.

REST APIs

In addition to the requirements listed above, the following are required for deviopment with the Web
AUTH and Web Enroliment APIs.

» Windows Web Server (I1S)
= HID DigitalPersona Web Management Components
* An S5L certificate

See the HID DigitalPersona Administrator and Client Guides for instructions on installing and
configuring the above components.

Native API

The recommended minimum software requirements needed to develop applications with the
DigitalPersona Native AP| are:

* Development workstation running Windows 7 or later and HID DigitalPersona Workstation or Kiosk.

= To compile the sample code: Visual Studio 2012 or later. HID DigitalPersona Server running
Windows Server 2012 and HID DigitalPersona AD or LDS Server.

= HID DigitalPersona Server running Windows Server 2012 and HID DigitalPersona AD or LDS
Server.

See the topic Supported HID DigitalPersona Products below for a complete list of compatible HID
DigitalPersona clients and servers.

Target system

The following section describes the requirements for the Target System. Recommended minimum
software reguirements are the same as for the development system with the following exceptions:

DigitalPersona Access Management API.PDF 3

https://www.crossmatch.com/company/support/documentation

= Visual Studio is not required.

= HID DigitalPersona Server running Windows Server 2012 and HID DigitalPersona AD or LDS
Server.

= |f the logon and Password Manager features are not needed, the HID DigitalPersona client can be
installed without these applications. This installs the DigitalPersona Access Management API
runtime only.

Supported HID DigitalPersona Products

The DigitalPersona Access Management AP| is compatible with the following HID DigitalPersona
products:

+ DigitalPersona AD or LDS Workstation 2.1 or later.
= DigitalPersona AD or LD5 Kiosk 2.1 or later.
= DigitalPersona AD or LDS AD Server, version 2.1 or later.

DigitalPersona Web Access Core APl library

DigitalPersona Access Management APl (DPAM) is a suite of services and APIs helping you to
accomplish typical access management tasks like user credential enrollment, identification,
authentication, identity claims issuance, access policy management etc.

As a part of DPAM, the DigitalPersona Web Access Core API library [@digitalpersona/core] provides
Typescript/Javascript classes and functions shared by other DPAM APls, such as

* (@digitalpersonalauthentication
* (@digitalpersonalenroliment
* (@digitalpersona/devices.

s

The library consists of these major parts:

= Encoders to convert data between different formats (UTF8, UTF16, Basef4, Basef4Ur], Base32)
* Abase Credential type and derived classes for all supported credentials

= JSON Web Token utilities and a list of supported claims

= A UserName class with support for different user name types (SAM, UPN, GUID etc)

* A Biosample class and supporting utilities for biometric data transfer

* URL utilities

Requirements

= Evergreen browsers:
* Chromium-based
* Firefox
* Edge
= Legacy browsers (shims required):
= |E11

DigitalPersona Access Management API.PDF

https://www.npmjs.com/package/@digitalpersona/core
https://www.npmjs.com/package/@digitalpersona/authentication
https://www.npmjs.com/package/@digitalpersona/enrollment
https://www.npmjs.com/package/@digitalpersona/devices

* Node JS (shims required).
The library is distributed in following faorms:

* TypeScript (code and typings)
= transpiled ESS (unbundled and bundled UMD maodule)
* transpiled ES6 (unbundled and bundled UMD module)

Browser support

No special requirements.

Node JS support

Node JS requires a “shim” for atob and btoa functions, for example:

const base64 = require('base-64");
global.btoa = function(s) { return base64.encode(s); }
global.atob = function(s) { return base64.decode(s); }

Additional documentation

= Tutorial

* How-to

* Reference

* Library Maintenance

JavaScript Web Service Clients
As a part of DPAM this Typescript/Javascript library provides clients for the following DPAM services.

= Authentication Service client (DPWebAuth)
» Poalicy Service client (DPWebPolicies)

* Claims Service client (DPWebClaims)

= Enroliment Service client (DPWebEnroll)

+ Secrets Service client (DPWebSecrets)

Requirements

= Evergreen browsers:
* Chromium-based
= Firefox
* Edge
= Legacy browsers (shims required):
+ |E11
* Node J5 (shims required). IE-

This library is distributed in the following forms:

* TypeScript (code and typings)

DigitalPersona Access Management API.PDF

https://hidglobal.github.io/digitalpersona-core/tutorial.html
https://hidglobal.github.io/digitalpersona-core/how-to.html
https://hidglobal.github.io/digitalpersona-core/reference.html
https://hidglobal.github.io/digitalpersona-core/maintain/

= transpiled ESS (unbundled and bundled UMD module)
» transpiled ES6 (unbundled and bundled UMD module)

Browser support

The library uses an ES6 promise AP for asynchronous calls. If it is used in older browsers, you have to
provide a “shim” adding the promise API to your target browser.

The library uses an ES6 fetcn API for the HTTP connection. If it is used in older browsers, you have to
provide a “shim” adding the feten API to your target browser.

Node JS support

Node JS requires a “shim” for ztop and proa functions, for example:

const basesd = reguire('base-64'});
global.btoa = function(s) { return basebd.encode(s); }

global.atob = function(s) { return basefd.decode(s); }

Additional documentation

* Tutorial

* How-to

* Reference

* Maintenance

Access Management Services

The DigitalPersona Access Management Services are a collection of RESTful services used to
implement various features of the DigitalPersona solution in web applications.

These services are:

* Web Enrcliment Services (WES)

* Web Secret Management Service (WSMS)
* Web Authentication Service (WAS)

* Web Authentication Policy Service (WAPS)

The last three of the services mentioned above were formerly part of the DigitalPersona Web AUTH
SDK.
s

Also, see the following topics:

+ WES Credential Format

* WAS Credential Format

* Web Smart Card Support

« Smart Card Data Format

* Custom Authentication Policies

DigitalPersona Access Management API.PDF

https://hidglobal.github.io/digitalpersona-services/tutorial.html
https://hidglobal.github.io/digitalpersona-services/how-to.html
https://hidglobal.github.io/digitalpersona-services/reference.html
https://hidglobal.github.io/digitalpersona-services/docs/maintain
https://hidglobal.github.io/digitalpersona-access-management-services/wes.html
https://hidglobal.github.io/digitalpersona-access-management-services/wsms.html
https://hidglobal.github.io/digitalpersona-access-management-services/wsms.html
https://hidglobal.github.io/digitalpersona-access-management-services/waps.html
https://hidglobal.github.io/digitalpersona-access-management-services/wes-cred-format.html
https://hidglobal.github.io/digitalpersona-access-management-services/was-cred-format.html
https://hidglobal.github.io/digitalpersona-access-management-services/web-smart-card-support.html
https://hidglobal.github.io/digitalpersona-access-management-services/smart-card-data-format.html
https://hidglobal.github.io/digitalpersona-access-management-services/custom-auth-policies.html

Web Authentication API

As a part of DPAM, the DigitalPersona Web Authentication API allows you to strengthen your web
application security with multifactor authentication (MFA), working seamlessly with various
authentication such as fingerprint readers, card readers, cameras for face recognition, FIDO tokens,
OTP tokens, as well as with traditional credentials like passwords, PINs and Security Questions.

The DigitalPersona Web Authentication AP! is a higher-level JavaScript APl used to implement
authentication of supported credentials in your web-based application.

As an alternative, you can use the lower-level RESTful API described here.

Dependencies
The library depends on the:

= DigitalPersona Web Services AP
* DigitalPersona Core API

It also requires the DigitalPersona Web Components and DigitalPersana Authentication Server running
in your security domain.

Some authentication tokens (fingerprints, cards, U2F, Integrated Windows Authentication) require the
DigitalPersona Device Access APl to read authentication data from a device and pass it to the Web
Authentication API.

Requirements

= Ewvergreen browsers:
* Chromium-based
» Firefox
+ Edge
* Legacy browsers (shims reguired):
+ |EM
* Node JS (shims required).

The library is distributed in following forms:

* TypeScript (code and typings)
= transpiled ES5 (unbundled and bundled UMD module)
» transpiled ES6 (unbundled and bundled UMD module)

Browser support

The library uses ES8 promise API for asynchronous calls. If it is used in older browsers, you have to
provide a “shim” adding the promise APIto your target browser.

The library uses ESB fetch API for HTTP connection. If it is used in older browsers, you have to
provide a “shim” adding the fetch API to your target browser.

DigitalPersona Access Management API.PDF 7

Node JS support

Node JS requires a “shim” for atob and btoa fun&onsi for example:

const base6d4 = require('base-64');
global.btoa = function(s) { return baset4.encode(s); }
global.atob = function(s) { return baset4.decode(s); }

The library uses ES6 fetch API for HTTP connection. If it is used in Node JS, you have to provide a
“shim” adding the fetch API to NodedS, for example a node-fetch by David Frank:

global.fetch = require('node-fetch');

Additional documentation:

= Tutorial

* How-to

* Reference

* Library Maintenance

Web Enroliment API

As a part of DPAM, the DigitalPersona Web Enrollment API allows you to strengthen your web
application security with multifactor authentication (MFA) seamlesly working with various authentication
devices like fingerprint readers, card readers, cameras for face recognition, FIDO tokens, OTP tokens,
as well as with traditional credentials like password, PIN or security gquestions.

This library provides an API for enrollment of user credentials from a web browser.

Dependencies
The library depends on

= DigitalPersona Web Services AP
= DigitalPersona Core AP

It also requires DigitalPersona Web Components and DigitalPersona Authentication Server running in
your security domain.

Some authentication tokens (fingerprints, cards, U2F, Integrated Windows Authentication) require
DigitalPersona Device Access AP| to read enrollment data from a device and pass it the DPAM Web
Enrollment.

Requirements

= Evergreen browsers:
* Chromium-based
» Firefox
* Edge

DigitalPersona Access Management API.PDF

https://github.com/bitinn/node-fetch
https://hidglobal.github.io/digitalpersona-authentication/tutorial.html
https://hidglobal.github.io/digitalpersona-authentication/how-to.html
https://hidglobal.github.io/digitalpersona-authentication/reference.html
https://hidglobal.github.io/digitalpersona-authentication/maintain/

* Legacy browsers (shims required):
+ |ET1
= Node JS (shims required).

The library is distributed in following forms:

* TypeScript (code and typings)
* transpiled ESS (unbundled and bundled UMD module)
* transpiled ES6E (unbundled and bundled UMD module)

Browser support

The library uses ESB promise API for asynchronous calls. If it is used in older browsers, you have to
provide a “shim” adding the promise API to your target browser.

The library uses ES6 fetch API for HTTP connection. If it is used in older browsers, you have to
provide a “shim” adding the fetch API to your target browser.

Node JS support

Node JS requires a “shim” for atob and btoa functions, for example:

const base64 = require('base-64');
global.btoa = function(s) { return basef4.encode(s); }
global.atob = function(s) { return baset4.decode(s); }

The library uses ESB fetch API for HTTP connection. If it is used in Node JS, you have to provide a
“shim” adding the fatch API to NodedS, for example a node-fetch by David Frank:

global.fetch = require('node-fetch');

Additional documentation:

= Tutorial

*+ How-to

* Reference

* Library Maintenance

DigitalPersona Access Management API.PDF

https://github.com/bitinn/node-fetch
https://hidglobal.github.io/digitalpersona-authentication/tutorial.html
https://hidglobal.github.io/digitalpersona-authentication/how-to.html
https://hidglobal.github.io/digitalpersona-authentication/reference.html
https://hidglobal.github.io/digitalpersona-authentication/maintain/

Devices API

As a plst of DPAM, the DigitalPersona Device Access API library [@digitalpersona/devices] provides

Typescript/Javascript classes and functions allowing to communicate with authentication devices such

as fingerprint readers and card readers from web browser. The secure communication channel is
provided by DigitalPersona WebSDK agent.

DigitalPersona Web SDK (DP Web5DK) is a Windows service and a user agent application
running locally on a user device and providing access to authentication devices like
fingerprint readers, smartcard readers etc. These devices are not directly accessible from
Javascript running in a browser.

External dependencies

The library depends on a DigitalPersona Composite Autentication Workstation (DPCA Workstation)
installed on the local machine. The DPCA Workstation provides a local Windows service and a user
agent which communicate with the hardware and provide a secure messaging channel for Javascript
running in a browser.

Requirements

* Evergreen browsers:
* Chromium-based
» Firefox
* Edge
* Legacy browsers (shims required):
+ |E11

The library is distributed in following forms:

* TypeScript (code and typings)
+ transpiled ESS (unbundled and bundled UMD maodule)
» transpiled ES6E (unbundled and bundled UMD maodule)

Browser support

The library uses ESG promise AP for asynchronous calls. If it is used in older browsers, you have to
provide a “shim” adding the promise API to your target browser.

The library uses the DigitalPersona WebSDK library. You must include the library into your application
script list:

<htm]=
<body:

<script type="text/javascript" src="websdk/websdk.client.ui.min.js"></script>

</body=>
</html=

DigitalPersona Access Management API.PDF

10

https://hidglobal.github.io/digitalpersona-devices/

The library uses wehsocket browser API for streaming authentication data and messages. Browsers
not supporting websocker Standard RFC 6455 are not supported.

Node JS support *

This library does not support Node JS.

Additional documentation

+ Tutorial

* How-to

* Reference

* Library Maintenance

Native API

The DigitalPersona Native API (previously DP AUTH AP} is a subset of the DigitalPersona Access
Management API that provides native enrollment, authentication and identification on the Windows
Platform and the web.

User enrollment can be performed through a DigitalPersona client such as the DigitalPersona
Workstation or Kiosk, Attended Enroliment or Web Enroliment. A sample application is also included
illustrating use of the APl in building your own web-based client.

This APl is automatically installed as part of thesdﬁ)igitalPersona clients.

= DigitalPersona AD Workstation or LDS Workstation
= DigitalPersona AD Kiosk or LDS Kiosk

Sample applications and code illustrating various functions available through the AP are included for
C++and NET and the web (through the RESTful protocol).

For detailed instructions on installing and configuring the DigitalPersona environment, see the
DigitalPersona Administrator and Client Guides.

When you install a DigitalPersona Workstation or Kiosk client, the DigitalPersona Native APl runtime is
installed as well. As shown in the diagram below, your application must be installed on workstations that
are also running one of the DigitalPersona clients.

DigitalPersona
AD or LDS Server

DigitalPersona
Workstation or Kiosk

Jf Application using
The DigitalPersona
Native API

DigitalPersona Access Management API.PDF 11

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://hidglobal.github.io/digitalpersona-devices/tutorial.html
https://hidglobal.github.io/digitalpersona-devices/how-to.html
https://hidglobal.github.io/digitalpersona-devices/reference.html
https://hidglobal.github.io/digitalpersona-devices/maintain/
https://hidglobal.github.io/digitalpersona-sample-cpp//
https://hidglobal.github.io/digitalpersona-sample.dotnet/
https://hidglobal.github.io/digitalpersona-sample.web/
https://www.crossmatch.com/company/support/documentation/

The API can be used for the following:

* Authenticating users with the authentication policy and user interface used by DigitalPersona
Workstation/Kiosk and optionally reading a user secret.

The DPAlAuthenticate function displays the multi-factor authentication dialog and matches the
supplied credentials against the user's enrolled credentials. The customizable dialog box accepts
the credentials required by the authentication policy set by the DigitalPersona administrator. On
successful authentication, DPAlAuthenticate can optionally return user secrets to the application.

= |dentifying users by searching in the DigitalPersona database to find the user and authenticate them.

+ The DPAlldentAuthenticate function displays the multi-factor identification dialog and identifies the
user based on the credentials supplied.

The customizable dialog box allows the user to provide the credentials required by the current
authentication policy. If the identification succeeds, DPAlldentAuthenticate can optionally return the
user name and secret to the application.

+ Retrieving and saving user secrets. Secrets are cryptographically protected and are released to an
application only after successful authentication of the user. Secrets are stored in the DigitalPersona
database and roam with the rest of the user data.

* Implementing custom authentication policies which extend the DigitalPersona administrator's
policies or create new policies.

The DigitalPersona Native AP| observes all of the settings in the DigitalPersona software regarding its
communications with the server, supported credentials, policies, etc.

For advanced users, your application can require additional cret]%ntials (i.e., you can create a custom
authentication policy), but if secret release is required, your application’s must meet the requirements of
the policy set by the DigitalPersona administrator.

Target Audience

This AP is for developers who have a working knowledge of the C++ programming language. In
addition, readers should have an understanding of the DigitalPersona product and its authentication
terminology and caoncepts.

Related Topics

Installation

Typical Workflow

MNative API functions

Sample Applications

Custom Authentication Policies

DigitalPersona Access Management API.PDF 12

https://hidglobal.github.io/digitalpersona-native-api/docs/installation.html
https://hidglobal.github.io/digitalpersona-native-api/docs/typical-workflow.md
https://hidglobal.github.io/digitalpersona-native-api/docs/functions.md
https://hidglobal.github.io/digitalpersona-native-api/docs/sample-applications.md
https://hidglobal.github.io/digitalpersona-native-api/docs/custom-auth-policies.md

Sample Applications

The DigitalPersona Sample Applications illustrate use of the web and native Windows APls for
enroliment, authentication and device access.

Use the following links to view documentation for each sample application. Links to the associated
repositories are provided in the documentation.

Sample Application Description

digitalpersona-sample-angularjs Bank of DigitalPersona sample application illustrating web
user creation, enroliment, device access and authentication
utilizing the DigitalPersona LDS solution.

digitalpersona-sample-js-oidc Sample web application built on the AngularJs foundation
and using OpenlD Connect to access HID DigitalPersona
AD features such as web authentication, enrollment and
device access.

digitalpersona-native-samples Sample native Windows applications in C++, NET and the
Web, illustrating Windows enrollment, authentication and
device access.

Published/Revised: August 1, 2019

DigitalPersona Access Management API.PDF

13

https://hidglobal.github.io/digitalpersona-sample-angularjs/docs/index.html
https://hidglobal.github.io/digitalpersona-sample-js-oidc/
https://hidglobal.github.io/digitalpersona-native-api/index.html
https://hidglobal.github.io/digitalpersona-access-management-api/samples/digitalpersona-c++-sample.html
https://hidglobal.github.io/digitalpersona-access-management-api/samples/digitalpersona-native-api-samples.html
https://hidglobal.github.io/digitalpersona-access-management-api/samples/digitalpersona-sample-web.html

